6 research outputs found

    Performance analysis of mobile networks under signalling storms

    Get PDF
    There are numerous security challenges in cellular mobile networks, many of which originate from the Internet world. One of these challenges is to answer the problem with increasing rate of signalling messages produced by smart devices. In particular, many services in the Internet are provided through mobile applications in an unobstructed manner, such that users get an always connected feeling. These services, which usually come from instant messaging, advertising and social networking areas, impose significant signalling loads on mobile networks by frequent exchange of control data in the background. Such services and applications could be built intentionally or unintentionally, and result in denial of service attacks known as signalling attacks or storms. Negative consequences, among others, include degradations of mobile network’s services, partial or complete net- work failures, increased battery consumption for infected mobile terminals. This thesis examines the influence of signalling storms on different mobile technologies, and proposes defensive mechanisms. More specifically, using stochastic modelling techniques, this thesis first presents a model of the vulnerability in a single 3G UMTS mobile terminal, and studies the influence of the system’s internal parameters on stability under a signalling storm. Further on, it presents a queueing network model of the radio access part of 3G UMTS and examines the effect of the radio resource control (RRC) inactivity timers. In presence of an attack, the proposed dynamic setting of the timers manage to lower the signalling load in the network and to increase the threshold above which a network failure could happen. Further on, the network model is upgraded into a more generic and detailed model, represent different generations of mobile technologies. It is than used to compare technologies with dedicated and shared organisation of resource allocation, referred to as traditional and contemporary networks, using performance metrics such as: signalling and communication delay, blocking probability, signalling load on the network’s nodes, bandwidth holding time, etc. Finally, based on the carried analysis, two mechanisms are proposed for detection of storms in real time, based on counting of same-type bandwidth allocations, and usage of allocated bandwidth. The mechanisms are evaluated using discrete event simulation in 3G UMTS, and experiments are done combining the detectors with a simple attack mitigation approach.Open Acces
    corecore